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Multi-Scale Modeling Motivation

x0

x1

X0,j

x2
After Ferreira and Lee, 2007, 
Multiscale Modeling: A Bayesian 
Perspective

Data collected at one level informs values at other levels

Multiscale random fields with averaging “link” between them

1) More robust link function for binary media

2) Multiscale modeling using Bayesian inference

Two points 
of this 
presentation
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Upscaling Binary Media
• Upscaling binary media is long-standing area of research 

interest in multiple fields
• Majority of approaches use information on modal 

permeabilities and proportions (+ inclusion shapes)
• Phase connectivity is not included in previous approaches

Recent Development: 
(Knudby et al., 2006)

keff = f(k1 ,k2 ,proportion,distance) 
Average distance that a streamline 
travels through the matrix controls 
effective permeability

Figures from: Knudby et al., 2006, 
Advances in Water Resources



4

Upscaling Binary Media (Cont.)

• Phase Change Theorem
– High perm inclusions in a low perm matrix or vice versa
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Object and Distance Calculations
Need object area and average distance 
to closest “downstream” object

Identify downstream most point on 
each object (“from”)

Search from there to closest perimeter 
point on nearby object (“to”)

Two-stage approach for defining 
“nearby”:

1) Voronoi polygons

2) Detailed search

Within Voronoi polygon

Detailed search
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Way Too Slow for Inversion!

Estimate effective permeability 
with no field at all!
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Subgrid Model
• Inexpensive means of estimating permeability 

within a region
– No instantiation of binary field

Given two modal permeabilities, threshold 
value and information on the correlation of 
the field, estimate the permeability

Threshold crossing theory to get at size of 
excursions (inclusions)

Truncated Gaussian Fields!

From: Adler et al., 2009, Applications of Random Fields 
and Geometry, Foundations and Case Studies
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Truncated MultiGaussian Fields
N The number of pixels above the truncation threshold, u.
m The number of distinct regions (inclusions) above the threshold
n The number of pixels in each region

Z Threshold =  1.000

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

E[N] = E[m]⋅E[n].  Expectation relationship:
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Euler Characteristic (EC) approximates 
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Euler Characteristic
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EC Expectation
Calculated EC

Z Threshold = -2.000
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Euler Characteristic = Euler Number = (#blobs - #holes), at least in 2D

Example field is 500x500 and filtered with an isotropic Gaussian kernel 
with a sigma = 10.0 distance units

“High in low”

“Low in high”

Decreasing proportion of high permeability material
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Spatial Point Process theory gives distribution 
of nearest neighbor distances:

Correct for finite sized inclusions:

Case when D’ < inclusion diameter?

Average Distance in Background
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Quantity: πd2 is exponentially distributed with 
mean = λ

Subtract mean inclusion diameter 
(assuming circular shape)

Direct calculation of D’ from 20 
truncated fields with FWHM (23.55) as 
approximation of minimum D’ value
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SubGrid Model Testing
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Initial test with two orders of magnitude 
difference in the permeabilities

Under-estimation of permeability when high 
perm proportion > 0.70.  

Spatial Point Process assumption not 
following constraints of complete spatial 
randomness (CSR) – Extremes are not 
random, they are dispersed due to 
maximum entropy nature of Gaussian fields

Added correction to decrease intensity of 
point process at high proportions:
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SubGrid Model Testing
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Sigma = 5.0
FWHM = 11.8

Sigma = 10.0
FWHM = 23.5
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Additional testing to check 
multiple kernel sizes and 2 and 
3 orders of magnitude difference 
in permeabilities

Legend:

Numerical result

Upscaled( Knudby et al., 2006)

Estimated (Subgrid model)
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Bayesian Inversion

• Why Bayesian inversion? 
– Inverse solutions are non-unique – define uncertainty in solutions as 

a posterior distribution consistent observations 
– Latent variables – unobserved secondary variables connected to 

primary variable through a model relationship (example of proportion 
of high permeability material shown here) 

– More flexibility for incorporating probabilistic relationships between 
variables

From: bayes.pl/bayesian.html

http://bayes.pl/bayesian.html


14

Inversion and Testing Process

Coarse, non- 
homogeneous 
“p” field (30x20)

fine binary “k” 
field 

(e.g., 3000x2000)

True kernel 
size, lo

coarse “k” field   
(e.g.,30x20)

Ground Truth Numerical 
Upscaling

Add error and 
select 20 or 40  
coarse scale k 
observations

Bayesian Inversion: Define 
posterior distribution of “p” fields 
at the coarse scale, these are 
conditioned to k observations and 
use sub-grid model to create link 
between p and k

10,000 coarse 
scale p fields

Uniformly sample 
resulting p fields

Combine each selected 
p field with single MG 
field created using lo

Resulting fine-scale binary field

Transport results (timing and location)

Ground Truth

Combine best fit p field 
with multiple MG fields 
created using lo

Resulting fine-scale binary field

Transport results (timing and location)

Retain single 
best fit p field

Uncertainty 
Assessment
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MultiScale Ground Truth

Kernel size (sigma = 5.0)

K1 = 100, k2 = 1

Coarse = 20x30

Fine = 2000x3000

Coarse block is 100x100 fine cells

Fine Scale Binary Medium

Z-score threshold field

Proportion Field
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Observations
• Sample ground truth permeability (coarse, 

numerical) field at 20 and 40 locations
– Sampling pattern from Latin Hypercube Sampling

• Given subgrid model to estimate k from p
– Compare kest to knum at observation locations to define 

model error
20 obs. points 40 obs. points
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Karhunen-Loève Background

• Prior information is a Gaussian process p field 
with Gaussian covariance (correlation length is 
10% of domain diagonal)
– Convert realization of Gaussian process to proportion 

(bounded) using cdf and error function
• K-L expansion of Gaussian process with enough 

modes to capture 99% of variance
– Decreased number of parameters are weights of 

eigenvectors of covariance matrix
– Basis functions and rate of eigenvalue decay selected 

to maintain modeled covariance
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Results

Observed proportion values 
(points), posterior mean 
proportion field (colored 
surface) and true proportion 
field (wireframe)

Example results of inferring proportion field from 40 
observations of permeability.  Results were obtained using 30 
KL modes and 300,000 iterations (run time approximately: 17 
minutes)

Mean and std. deviation calculated over 9000 realizations

Posterior standard deviation 
of inferred proportion values 
with observation locations 
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Inference Performance
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• MCMC runs met convergence diagnostics
• Posterior mean stabilizes with increasing KL modes (30-45)
• Results generally obtained with 300,000 iterations 

– Approximately 17 minutes on workstation
– Results in 9000 realizations of proportion field

Comparison of 
posterior pdfs for 
eight points on 
proportion field
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Flow and Transport Model
• Inferred proportion fields provide threshold for truncation 

of multiGaussian (MG) field
– Results shown for 40 observations and 30 KL modes

• Fine-scale (1200x800) binary fields are input to flow 
model
– Two order of magnitude difference in perms
– Steady state, single-phase permeameter BC’s
– 2000 particles (streamlines) tracked across domain

P field Z field MG field Binary field

Z = (-1.0)*G-1(p;0,1) If (MG - Z > 0.0), Binary = 1, else 0

Gaussian Field, FWHM = 11.774
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Flow and Transport Results
One MG field and uncertainty in 
inferred proportion fields

One inferred proportion field and 
uncertainty in multi-Gaussian fields

Gaussian Field, FWHM = 11.774
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fields created at fine scale: 
here 1200x800
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Summary
• Developed new subgrid model for binary media:

– Exploits properties of truncated Gaussian fields
– Based on recent upscaling algorithm (flow distances)

• Multiscale modeling with Bayesian inversion
– Demonstrated practical approach to multiscale Bayesian inversion
– Two scales with robust link function between them
– Two-levels of uncertainty (fine scale from MG and coarse scale from 

realizations of proportionality)
• Future work

– Extend subgrid model to include anisotropy in inclusions
– Utilize dynamic data (pressure, transport) in Bayesian inference
– Increase size difference between two scales
– Incorporate uncertainty in upscaling algorithm into Bayesian 

inversion approach (variance of estimates from subgrid model)


	Multiscale Behavior of Groundwater Flow and Transport in Binary Media
	Multi-Scale Modeling Motivation
	Upscaling Binary Media
	Upscaling Binary Media (Cont.)
	Object and Distance Calculations
	Way Too Slow for Inversion!
	Subgrid Model
	Truncated MultiGaussian Fields
	Euler Characteristic
	Average Distance in Background
	SubGrid Model Testing
	SubGrid Model Testing
	Bayesian Inversion
	Inversion and Testing Process
	MultiScale Ground Truth
	Observations
	Karhunen-Loève Background
	Results
	Inference Performance
	Flow and Transport Model
	Flow and Transport Results
	Summary

